Untangling Cortico-Striatal Connectivity and Cross-Frequency Coupling in L-DOPA-Induced Dyskinesia

نویسندگان

  • Jovana J. Belić
  • Pär Halje
  • Ulrike Richter
  • Per Petersson
  • Jeanette Hellgren Kotaleski
چکیده

We simultaneously recorded local field potentials (LFPs) in the primary motor cortex and sensorimotor striatum in awake, freely behaving, 6-OHDA lesioned hemi-parkinsonian rats in order to study the features directly related to pathological states such as parkinsonian state and levodopa-induced dyskinesia. We analyzed the spectral characteristics of the obtained signals and observed that during dyskinesia the most prominent feature was a relative power increase in the high gamma frequency range at around 80 Hz, while for the parkinsonian state it was in the beta frequency range. Here we show that during both pathological states effective connectivity in terms of Granger causality is bidirectional with an accent on the striatal influence on the cortex. In the case of dyskinesia, we also found a high increase in effective connectivity at 80 Hz. In order to further understand the 80-Hz phenomenon, we performed cross-frequency analysis and observed characteristic patterns in the case of dyskinesia but not in the case of the parkinsonian state or the control state. We noted a large decrease in the modulation of the amplitude at 80 Hz by the phase of low frequency oscillations (up to ~10 Hz) across both structures in the case of dyskinesia. This may suggest a lack of coupling between the low frequency activity of the recorded network and the group of neurons active at ~80 Hz.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Altered Resting State Cortico-Striatal Connectivity in Mild to Moderate Stage Parkinson's Disease

Parkinson's disease (PD) is a progressive neurodegenerative disorder that is characterized by dopamine depletion in the striatum. One consistent pathophysiological hallmark of PD is an increase in spontaneous oscillatory activity in the basal ganglia thalamocortical networks. We evaluated these effects using resting state functional connectivity MRI in mild to moderate stage Parkinson's patient...

متن کامل

Untangling cortico-striatal connectivity and cross-frequency coupling

1 Science for Life Laboratory, School of Computer Science and Communication, KTH Royal Institute 5 of Technology, Stockholm, Sweden 6 2 Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany 7 3 Integrative Neurophysiology and Neurotechnology, Neuronano Research Center, Department of 8 Experimental Medical Science, Lund University, Lund, Sweden 9 4 Department of Neuroscience, Karo...

متن کامل

Maladaptive Synaptic Plasticity in L-DOPA-Induced Dyskinesia

The emergence of L-DOPA-induced dyskinesia (LID) in patients with Parkinson disease (PD) could be due to maladaptive plasticity of corticostriatal synapses in response to L-DOPA treatment. A series of recent studies has revealed that LID is associated with marked morphological plasticity of striatal dendritic spines, particularly cell type-specific structural plasticity of medium spiny neurons ...

متن کامل

Cell type-specific plasticity of striatal projection neurons in parkinsonism and L-DOPA-induced dyskinesia

The striatum is widely viewed as the fulcrum of pathophysiology in Parkinson's disease (PD) and L-DOPA-induced dyskinesia (LID). In these disease states, the balance in activity of striatal direct pathway spiny projection neurons (dSPNs) and indirect pathway spiny projection neurons (iSPNs) is disrupted, leading to aberrant action selection. However, it is unclear whether countervailing mechani...

متن کامل

Derangement of Ras-guanine nucleotide-releasing factor 1 (Ras-GRF1) and extracellular signal-regulated kinase (ERK) dependent striatal plasticity in L-DOPA-induced dyskinesia.

BACKGROUND Bidirectional long-term plasticity at the corticostriatal synapse has been proposed as a central cellular mechanism governing dopamine-mediated behavioral adaptations in the basal ganglia system. Balanced activity of medium spiny neurons (MSNs) in the direct and the indirect pathways is essential for normal striatal function. This balance is disrupted in Parkinson's disease and in l-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2016